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Abstract 

Generalized process capability index, defined as the ratio of proportion of specification 

conformance to proportion of desired conformance, has been given by Maiti et al. (2010). 
Normal process has been taken into account. Under this distributional assumption, small 
sample as well as large sample properties of point estimators of the generalized process 
capability index for centered, off-centered and off-target process has been made. A data set 
has been analysed. 
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1. Introduction 
 
Quantifying the “capability” of a manufacturing process is an important initial step in any 
quality improvement program. Capability is usually defined in dictionaries as “the ability to 
carry out a task, to achieve an objective”. PCIs which establish the relationship between the 
actual process performance and the manufacturing specifications have been a focus of 
research in quality assurance and process capability analysis. Generalized Process Capability 
Index, defined as the ratio of proportion of specification conformance (or, process yield) to 
proportion of desired (or, natural) conformance. Further development of generalized process 
capability index for off-centered and off-target process has been made. 
 
The article is organized as follows. We give a brief review on the PCIs𝐶𝑝, 𝐶𝑝𝑘 , 𝐶𝑝𝑚 and 𝐶𝑝𝑚𝑘 in 

section 2. In sections 3 and4, we derive the point estimators (MLE and MVUE) for generalized 
process capability index (with process median being the process center) under the assumption 
of normal process distribution and simulation results have been reported and discussed. In 
section5, a data set has been analyzed to demonstrate the application of the generalized 

process capability index. Section 6concludes. 
 
2. Background 
 
The most popular PCIs are𝐶𝑝, 𝐶𝑝𝑘 , 𝐶𝑝𝑚  and 𝐶𝑝𝑚𝑘 .The 𝐶𝑝 index is defined as 
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where 𝐿and 𝑈are the lower and upper specification limits, respectively, and 𝜎is the process 
standard deviation. Note that 𝐶𝑝 does not depends on the process mean.The 𝐶𝑝𝑘 is then 

introduced to reflect the impact of 𝜇on the process capability indices. The 𝐶𝑝𝑘 index is defined 

as 
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The 𝐶𝑝𝑚 index was introduced by Chan et al. (1988). This index takes into account the 

influence of the departure of the process mean 𝜇from the process target𝑇.The 𝐶𝑝𝑚 index is 

defined as 
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The measure 𝐶𝑝𝑚 sometimes called the “Taguchi index”. There is also the hybrid index given by 

Pearn et al. (1992), 
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Clearly, 𝐶𝑝𝑚𝑘 is only meaningful when deviation from target is the main concern. This index is 

based on the quadratic loss function and, thus, should only be used when there is evidence of 
a quadratic monetary loss. There are an infinite number of possible loss functions, and in 
many practical cases, material outside specification limits may result in a total loss rather 
than a quadratic loss. Clearly 𝐶𝑝 ≥ 𝐶𝑝𝑘 ≥ 𝐶𝑝𝑚𝑘 and 𝐶𝑝 ≥ 𝐶𝑝𝑚 ≥ 𝐶𝑝𝑚𝑘 . 

3. Generalized Process Capability Index 
 
Process Capability Indices (PCIs) aim to quantify the capability of a process of quality 
characteristic (𝑋) to meet some specifications that are related to a measurable characteristic 
of its produced items. It appears to be a general acceptance of the idea that PCIs can be used 
only after it has been established that a process is in “statistical control” (for example, by the 
use of control charts).A generalized Process Capability Index, defined as the ratio of proportion 
of specification conformance (or, process yield) to proportion of desired (or, natural) 
conformance. Almost all the process capabilities defined in the literature are directly or 
indirectly associated with this generalized index. Normal as well as non-normal and 
continuous as well as discrete random variables could be covered by this index. It can also be 
assessed under either unilateral or bilateral specifications.The generalized process capability 
index is defined as 

0p

p
C py  .    (3.1) 

Where,𝑝 = 𝐹 𝑈 − 𝐹(𝐿)and  𝑝0 = 𝐹 𝑈𝐷𝐿 − 𝐹(𝐿𝐷𝐿). Practitioners may realize these limits as lower 
tolerance limit (𝐿𝑇𝐿) and upper tolerance limit (𝑈𝑇𝐿) respectively. When the process is off-

centered, then𝐹 𝐿 + 𝐹(𝑈) ≠ 1, but the proportion of desired conformance achieved. In that 
case the index is as follows: 
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with𝜇𝑒being the median of the distribution and the process center is to be located such 
that𝐹 𝜇𝑒 =  𝐹 𝐿 + 𝐹(𝐿) /2, i.e., 𝐹 𝐿 + 𝐹 𝑈 = 1, 𝛼1 = 𝑃(𝑋 < 𝐿𝐷𝐿) and 𝛼2 = 𝑃(𝑈 > 𝑈𝐷𝐿). It 

generally happens that process target 𝑇 is such that𝐹 𝑇 =  𝐹 𝐿 + 𝐹(𝑈) /2; if 𝐹(𝑇) ≠
 𝐹 𝐿 𝐹 𝑈  /2, the situation may be described as “generalized asymmetric tolerances”  have 
described by the term “asymmetric tolerances” when 𝑇 ≠ (𝐿 + 𝑈)/2.Under this circumstance, 
the index is defined as follows: 
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This generalized process capability index that could be used for normal as well as discrete 
quality characteristics. Almost all the most widely used capability indices are directly or 
indirectly associated with this index. It could be used comfortably by the practitioners. 

4. Generalized Process Capability Index 

This section deals with the generalized process capability index (GPCI) for normal process. 

Inference about index𝐶𝑝𝑦 is equivalent to that about𝑝 = 𝐹 𝑈 − 𝐹(𝐿). 

Assuming normality of the examined process, its yield is given by 

𝑝 = 𝐹 𝑈 − 𝐹(𝐿) 

= Φ  
𝑈−𝜇

𝜎
 − Φ  

𝐿−𝜇

𝜎
 , 

where𝜇 and 𝜎 denote the mean and the standard deviation of the process respectively, and 

Φ(. ) is the cumulative distribution function of the standard normal variate. The value of 𝑝 can 
be estimated using the estimator 

𝑝 = Φ  
𝑈−𝑥 

𝑠
 − Φ(

𝐿−𝑥 

𝑠
), 

where𝑥  and 𝑠 are the sample mean and the sample standard deviation respectively, obtained 
from a random sample of size 𝑛.Hence the maximum likelihood estimator (MLE) of 𝐶𝑝𝑦  is 
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Using Lehmann-Scheffe theorem, the minimum variance unbiased estimator of 𝑝 can be 
obtained as 
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for 𝑋 − 𝑠 𝑛 − 1 < 𝑥 < 𝑋 + 𝑠(𝑛 − 1). Hence the minimum variance unbiased estimator (MVUE) of 
𝐶𝑝𝑦  is given as 
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Now we carry out simulation study to compare the estimators (MLE and MVUE) of 𝐶𝑝𝑦  using 

the equation (4.4) and (4.5).The estimators and their Mean Square Errors (MSEs) are 
presented in the following table for 𝑝0 = 0.90 and for choice of (𝐿, 𝑈)as (0,10)and for sample 
sizes 𝑛 = 25,50, 100, 150 and 200. 25,000such repetitions are made to calculate the average 

𝐶 𝑝𝑦and average 𝐶 𝑝𝑦and their MSEs. We generate observations from normal distributions with 

choices of(𝜇, 𝜎) =  (5,3), (5,4), (6,3)and (6,4). First column of the table show the values of 𝜇, 𝜎and 

the corresponding𝐶𝑝𝑦 . Remaining columns show average 𝐶 𝑝𝑦and its MSE and average 𝐶 𝑝𝑦and 

its MSE, respectively, for the above mentioned sample sizes. It is observed that in all most all 

the cases MSE of 𝐶 𝑝𝑦 is less than that of𝐶 𝑝𝑦 . As expected, MSEs are almost equal for large 

sample sizes. 

Table 1: Estimates of 𝑪𝒑𝒚 and their MSEs with 𝑳 = 𝟎, 𝑼 = 𝟏𝟎, samples generated from 

normal distribution. 

𝜇, 𝜎, 𝐶𝑝𝑦  / 𝑛 25 50 100 150 200 

(5,3) 

 

1.004910328 

1.005517738 

0.002426411 

1.012077716 

0.002566664 

1.005178344 

0.001274405 

1.008466977 

0.001313873 

1.0049998458 

0.0006740702 

1.0066411223 

0.0006846556 

1.0048103289 

0.0004459613 

1.0059034939 

0.0004503547 

1.0048546901 

0.0003414191 

1.0056743211 

0.0003439839 

(5,4) 

 

0.876333836 

0.882290039 

0.004884550 

0.885645657 

0.005208379 

0.879793233 

0.002489539 

0.881357107 

0.002572843 

0.878030195 

0.001274883 

0.878778235 

0.001295943 

0.8773517235 

0.0008398995 

0.8778422070 

0.0008490264 

0.8771119184 

0.0006401974 

0.8774770802 

0.0006454093 

(6,3) 

 

0.984487387 

0.986129458 

0.002995628 

0.991619397 

0.003163933 

0.985330398 

0.001535556 

0.988086222 

0.001580817 

0.9849121747 

0.0007876467 

0.9862870282 

0.0007993607 

0.9847368536 

0.0005331396 

0.9856533961 

0.0005383535 

0.9848391261 

0.0003963808 

0.9855266060 

0.0003995182 

(6,4) 

 

0.860597272 

0.864134984 

0.002618593 

0.865594175 

0.002690406 

0.862062126 

0.001317132 

0.862762209 

0.001334610 

0.862290146 

0.001335275 

0.862991604 

0.001353302 

0.8617021225 

0.0008751462 

0.8621639133 

0.0008829455 

0.8614464514 

0.0006572730 

0.8617905439 

0.0006616727 

 

In case of off-centered situation (i.e., when𝐹 𝐿 + 𝐹(𝑈) ≠ 1), we have already defined 
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Obtaining 𝑥 and𝑠, the sample mean and the samplestandard deviation respectively from a 

random sample ofsize 𝑛to find out the MLE of 𝑝𝑢and𝑝𝑙, which are given as 

𝑝 𝑢 = Φ  
𝑈 − 𝑥 

𝑠
  

and     

     𝑃 𝑙 = Φ  
𝐿−𝑥 

𝑠
  

and using the invariance property of MLE, we can easily find out the MLE of 𝐶𝑝𝑦𝑘 as 
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To find out the MVUE of𝐶𝑝𝑦𝑘 , at first we have to find out the MVUE of 𝑝𝑢and 𝑝𝑙respectively, 

which are given as 
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 Then, we can find a plug-in estimator 𝐶 𝑝𝑦𝑘 of 𝐶𝑝𝑦𝑘 which is given by 
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We simulate observations from normal distribution to compare the estimators (MLE and 
MVUE) of𝐶𝑝𝑦𝑘 . We take𝐿 = 0, 𝑈 = 8,𝛼1 = 0.04and𝛼2 = 0.06, all other set-ups remain same as 

discussed earlier. Here also we see that in all most all the cases MSE of 𝐶 𝑝𝑦𝑘 is less than that of

pykĈ . 
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Table 2: Estimates of 𝑪𝒑𝒚𝒌 and their MSEs with 𝑳 = 𝟎, 𝑼 = 𝟖, 𝜶𝟏 = 𝟎. 𝟎𝟒 and 𝜶𝟐 = 𝟎. 𝟎𝟔, 

samples generated from normal distribution. 

𝜇, 𝜎, 𝐶𝑝𝑦𝑘  / 𝑛 25 50 100 150 200 

(5,3) 

 

0.775783514 

0.78617494 

0.01781331 

0.68534603 

0.02947563 

0.780697462 

0.008865522 

0.675723490 

0.020622312 

0.778734143 

0.004535656 

0.672055263 

0.016156349 

0.778473520 

0.002978109 

0.671081344 

0.014463103 

0.777044558 

0.002239725 

0.669491700 

0.013944571 

(5,4) 

 

0.62130147 

0.62681401 

0.01205039 

0.39118284 

0.06520912 

0.62709551 

0.01215308 

0.39156336 

0.06506308 

0.624634261 

0.006006254 

0.386477961 

0.061305283 

0.623554861 

0.003986055 

0.384926554 

0.059906070 

0.623459508 

0.003050909 

0.384713053 

0.059057351 

(6,3) 

 

0.56251696 

0.57549463 

0.02640220 

0.52584932 

0.02758598 

0.56963948 

0.01307163 

0.51924624 

0.01476357 

0.566093993 

0.006446083 

0.514787919 

0.008618120 

0.564284201 

0.004308632 

0.512925664 

0.006682562 

0.564532433 

0.003239196 

0.513165166 

0.005599852 

(6,4) 

 

0.43514196 

0.44679518 

0.03049218 

0.29972101 

0.04456109 

0.44126404 

0.01500324 

0.29234175 

0.03308494 

0.43761329 

0.00736355 

0.28748604 

0.02803485 

0.43729474 

0.00489519 

0.28629944 

0.02632046 

0.436970849 

0.003641562 

0.285644087 

0.025400406 

 

In case of off-target situation, using the invariance property of MLE, we can find out    the 
MLE of the index𝐶𝑝𝑇𝑘 , given as 
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To find out the MVUE of 𝐶𝑝𝑇𝑘  , here also at first we have to find out the MVUE of 𝑝𝑡𝑢and 

𝑝𝑡𝑙 respectively, which are given as 
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 And we can find a plug-in estimator pTkC


 of𝐶𝑝𝑇𝑘  which is given by 
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Again we carry out a simulation study to compare the estimators of 𝐶𝑝𝑇𝑘 . All other set up 

remain same as discussed earlier. In all cases MSE of 𝐶 𝑝𝑇𝑘 is less than that of pTkC


. As we enter 

into the unbiased class, we are losing some efficiency. It is to be noticed that MLE is not an 
unbiased estimator. To find MVUE one has to perform numerical method of integration. For 
this complexity, it may be concluded that the use of MLE sometimes fairly adequate. 
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Table 3: Estimates of 𝑪𝒑𝑻𝒌 and their MSEs with 𝑳 = 𝟎, 𝑼 = 𝟖, 𝜶𝟏 = 𝟎. 𝟎𝟒 and 𝜶𝟐 = 𝟎. 𝟎𝟔, 

samples generated from normal distribution.  

𝜇, 𝜎, 𝐶𝑝𝑇𝑘  / 𝑛 25 50 100 150 200 

(5,3) 

 

0.775783514 

0.78617494 

0.01781331 

0.68534603 

0.02947563 

0.780697462 

0.008865522 

0.675723490 

0.020622312 

0.778734143 

0.004535656 

0.672055263 

0.016156349 

0.778473520 

0.002978109 

0.671081344 

0.014463103 

0.777044558 

0.002239725 

0.669491700 

0.013944571 

(5,4) 

 

0.62130147 

0.62681401 

0.01205039 

0.39118284 

0.06520912 

0.62709551 

0.01215308 

0.39156336 

0.06506308 

0.624634261$ 

0.006006254 

0.386477961 

0.061305283 

00.623554861 

00.003986055 

0.384926554 

0.059906070 

0.623459508 

0.003050909 

0.384713053 

0.059057351 

(6,3) 

 

0.56251696 

0.57549463 

0.02640220 

0.52584932 

0.02758598 

0.56963948 

0.01307163 

0.51924624 

0.01476357 

00.566093993 

0.006446083 

0.514787919 

0.008618120 

0.564284201 

0.004308632 

00.512925664 

0.006682562 

0.564532433 

0.003239196 

0.513165166 

0.005599852 

(6,4) 

 

0.43514196 

0.44679518 

0.03049218 

0.29972101 

0.04456109 

0.44126404 

0.01500324 

0.29234175 

0.03308494 

0.43761329 

0.00736355 

0.28748604 

0.02803485 

0.43729474 

0.00489519 

0.28629944 

0.02632046 

0.436970849 

0.003641562 

0.285644087 

0.025400406 

 

5. Real-world Application 
 
This section is devoted to the inferential aspect of the generalized process capability index by 
analyzing a data set. Here, we provide an example using real life data set [c. f. Peng(2010)]. 
Since the parametric modelling is heavily dependent on the correct model specification, we use 
the Kolmogrov-Smirnov (K-S) goodness of fit test and correlation coefficient value in q-q 
plotting to identify the best parametric model to fit the underlying process. 
 
Voltage of Aluminium Foil: 
 

A capacitor built in a circuit may determine the resonant frequency and quality factor of a 
resonant circuit, power dissipation and operating frequency in a digital logic circuit, energy 
capacity in a high-power system and many other aspects. Aluminium foil is one of the crucial 
components that determine the quality of a capacitor. The voltage is an important quality 
characteristic of the aluminium foil. The production specifications of the voltage are 𝐿, 𝑇, 𝑈 =
 510,520,530 . Calculation of generalized capability index boils down to calculation of the 
process yield. To calculate the process yield, it necessitates to apply a curve fitting method to 

approximate the quality characteristic distribution,𝑓(𝑥). The data set approximately fit to 
normal distribution with mean 522.172 and standard deviation 2.974 for which p value of K-S 
test is 0.2807 and correlation of the q-q plotting is 0.995. Histogram and fitted curve to normal 
distribution and control of this data set has been shown in the following figure. All the 

calculated indices are presented in Table 4. 
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Figure 1: Histogram and fitted density curve, q-q plotting and control chart of the data 

Table 4: Different Process Capability Indices calculated using data in Peng (𝟐𝟎𝟏𝟎).  

 

 
𝐶𝑝 = 1.120681 

 
𝐶𝑝𝑘 = 0.8772687 

 
𝐶𝑝𝑚 = 0.7084791 

 
𝐶𝑝𝑦 = 0.9984278 

 
𝐶𝑝𝑦𝑘 = 0.9941911 

 
𝐶𝑝𝑇𝑘 = 0.466463 

 
 
6. Conclusions 
 
In this article the inferential aspects of generalized process capability index has been 
presented. The MLE and MVUE of this generalized process capability index have been studied 
for normal process distribution and the estimators are compared through simulation study in 
different situations. The index is easy and comfortable to practitioners as well as interesting to 
the theoreticians. 
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